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Proteins in a biological membrane can be idealized as disks suspended in a thin viscous 
sheet surrounded by a fluid of lower viscosity (Saffman 1976). To determine the effect 
of hydrodynamic interactions on protein diffusivities in non-dilute suspensions, we 
numerically solve the Stokes equations of motion for a system of disks in a bounded 
periodic two-dimensional fluid using a multipole expansion technique. We consider 
both free suspensions, in which all the proteins are mobile, and fixed beds, in which a 
fraction of the proteins are fixed. For free suspensions, we determine both translational 
and rotational short-time self-diffusivities and the gradient diffusivity as a function of 
the area fraction of the disks. The translational self- and gradient diffusivities 
computed in this way grow logarithmically with the number of disks owing to Stokes 
paradox; to obtain finite values, we renormalize our simulation results by treating 
long-range interactions in terms of a membrane with an enhanced viscosity in contact 
with a low-viscosity three-dimensional fluid. The diffusivities in fixed beds require no 
such adjustment because, at non-dilute area fractions of disks, the Brinkman screening 
of hydrodynamic interactions is more important that the viscous drag due to the 
surrounding three-dimensional fluid in limiting the range of hydrodynamic inter- 
actions. The diffusivities are determined as functions of the area fractions of both 
mobile and fixed proteins. We compare our results for diffusivities with experimental 
measurements of long-time protein self-diffusivity after adjusting our short-time 
diffusivities calculations in an approximate way to account for effects of hindered 
diffusion due to volume exclusion, and find very good agreement between the two. 

1. Introduction 
The diffusion of integral membrane proteins (or receptors) within the membrane 

plays an important role in physiological responses of the cell. For example, the 
diffusion-limited reaction of two integral membrane proteins (4 receptors) in the 
membrane of an immunological cell called a basophil is responsible for the release of 
histamine into the blood stream in an acute allergic response (Metzger & Kinet 1988). 
The basis of much of the present understanding of the role of fluid mechanics in 
diffusion of integral membrane proteins is a model for the diffusion of a single protein 
presented by Saffman & Delbruck (1975) and Saffman (1976) which is described later 
in this introduction. 

It has been observed that the diffusion of proteins is a strong function of their 
concentration (Scalletar & Abney 1991). In addition, the diffusion rate is much lower 
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FIGURE 1 .  Sketch of a typical membrane cross-section containing proteins (taken from Bussell et al. 
1992). The proteins have large hydrophillic head groups outside the bilayer and a hydrophobic 
cylindrical section suspended in a lipid bilayer. 

in plasma membranes, in which some of the proteins are held fixed by attachment to 
the cytoskeleton, than it is in reconstituted membranes, which lack such constraints. 
Previous studies (Scalletar & Abney 199 1) which have considered thermodynamic 
interactions of proteins in terms of volume exclusion effects and inter-particle potential 
forces but neglected their hydrodynamic interactions failed to adequately explain these 
experimental trends. 

Recently, Bussell, Koch & Hammer (1992) extended Saffman’s analysis by 
considering the relative diffusion of two proteins in a membrane. By combining their 
results for relative diffusion with the ensemble averaging techniques developed in the 
study of suspensions of Brownian spheres (Batchelor 1976, 1982 ; Hinch 1977), Bussell, 
Koch & Hammer (1994) determined the first effects of hydrodynamic interactions on 
the short- and long-time self-diffusivities and the collective mobility in a membrane 
with a low protein area fraction $. In subsequent studies (Bussell, Koch & Hammer 
1995 a, b), these investigators combined their hydrodynamic analysis with results 
obtained from simulations of Saxton (1987, 1990), which account for the thermo- 
dynamic effects such as volume exclusion but not the hydrodynamic interactions 
among proteins, and the resulting long-time self-diffusivities were compared with those 
measured experimentally in several non-dilute protein-membrane systems. From these 
studies, it is clear that hydrodynamic interactions significantly affect the diffusivities 
and that the combination of hydrodynamic and thermodynamic (or non-hydrodynamic 
Brownian/Monte Carlo simulations) interactions can at least approximately account 
for both the large decrease in diffusivity with increasing $ and the much smaller rates 
of diffusion in plasma as compared to reconstituted membranes with the same $. 

The purpose of the present contribution is to provide more accurate results for the 
mobilities (or short-time diffusivities) in non-dilute membranes. This is accomplished 
through the use of numerical simulations based on multipole expansion techniques 
similar to those commonly in use for suspensions of spherical particles (Phillips, Brady 
& Bossis 1988; Ladd 1988, 1989, 1990; Mo & Sangani 1994; Sangani & Mo 1994). 

Our work, like that of Bussell et al. (1992, 1994, 1995a,b), is based on the model 
proposed by Saffman (1976). A sketch of integral membrane proteins (IMPs) in a 
bilipid cell membrane is shown in figure 1. The hydrophobic and hydrophillic parts of 
IMPs, indicated respectively by the dotted and shaded regions, restrict the IMPs 
motion to the plane of the membrane. The size of a typical IMP is much greater than 
the lipid molecules and therefore the lipid phase is treated as an incompressible 
Newtonian continuum with viscosity p. The surrounding aqueous phase on either 
side of the membrane is treated as a Newtonian continuum with viscosity p‘. The 
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proteins are idealized to be cylindrical and monodispersed with radius a and height h. 
The short-time self-diffusivity is then given by the well-known expression first derived 
by Einstein (1906) 

where k ,  is the Boltzmann constant, T is the absolute temperature, and m, is the self- 
mobility defined as the velocity with which a particle (protein) moves when acted upon 
by a force of unit magnitude, the force on all the other (mobile) particles in the 
suspension being zero. The original derivation due to Einstein considered only dilute 
Brownian suspensions, but arguments leading to (1) were later extended by Batchelor 
(1976) who showed that the above result applies to non-dilute suspensions as well 
provided that the diffusivity and mobility are treated as instantaneous configuration- 
dependent tensors. Ermak & McCammon (1978) used an alternative formulation 
based on a Langevin equation to derive the same result for the short-time self- 
diffusivity. Here, by short time we mean time small compared with the time it takes for 
the spatial configuration of particles to change appreciably but large compared with 
the viscous relaxation time of particle motion. 

Saffman (1976) considered the dilute limit in which the hydrodynamic interactions 
with the other proteins in the membrane can be neglected. Furthermore, since h defined 

D, = msk, T, (1) 

by 

is typically of 0(102-103) owing to the high viscosity of the lipid phase compared with 
the aqueous phase, he determined the mobility of the cylindrical particle when h %- 1. 
In this limit, the viscous resistance of the aqueous phase is negligible on the lengthscale 
a of protein radius and the velocity disturbance caused by the protein motion is 
essentially two-dimensional. Since the Reynolds number of the flow is very small, this 
velocity disturbance, however, grows logarithmically with the distance r from the 
centre of the protein owing to the well-known Stokes paradox according to which there 
does not exist a decaying solution to the Stokes equations of motion for the flow 
induced by a point force in a two-dimensional space. Saffman pointed out that the two- 
dimensional Stokes flow approximation, however, is not uniformly valid in space and 
that the viscous resistance due to the aqueous phase will become important at the scale 
of length ah. Thus, by using the method of matched asymptotic expansions, in which 
the flow is approximated to be two-dimensional in the inner region of scale a and three- 
dimensional in the outer region of scale ah, he showed that the diffusivity is given by 

= ph/(p’a) (2) 

K 1  
D,(h) = m, k,  T = -!!.--[log h - y] ,  

47cph (3) 

where y = 0.577216 ... is the Euler’s constant, and the subscript 0 is used to indicate 
that the result applies in the limit $ + O .  Since in this limit the difference between 
various different kinds of diffusivities vanishes, we have removed the subscript s from 
(1). Note also that the diffusivity is now a scalar quantity. 

Saffman (1976) also considered the problem of determining the rotational diffusivity 
of proteins at small $. Here, the mobility is defined as the angular velocity with which 
the particle rotates when acted upon by a torque of unit magnitude. This is a relatively 
straightforward calculation since the velocity induced by the point torque decays in a 
two-dimensional space, and, consequently, there is no need to account for the aqueous- 
phase viscous resistance. His result for the rotational diffusivity is 

DT,, = mT,, k,  T = k ,  T/(47cpha2). (4) 
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Note that the rotational diffusivity defined here has units of inverse time. The 
rotational diffusion considered here is for rotation of the IMP on its axis; the rotation 
of the axis of the IMP is restricted by hydrophobic/hydrophilic interactions. 

Saffman’s analysis for translational diffusion is applicable to situations in which the 
aqueous-phase resistance is the most important mechanism responsible for the decay 
of velocity disturbance at great distances from the moving particle. This is true for most 
reconstituted and organelle membranes but not for plasma membranes as pointed out 
by Bussell et al. (1995b). In the latter case, some of the proteins at any given instant 
are held fixed by attachments to the fibrous cytoskeleton below the membrane. Thus, 
the appropriate model for plasma membranes must treat diffusion of mobile proteins 
through a fixed bed of immobilized proteins. This changes the hydrodynamics 
considerably. Now the velocity disturbance caused by the mobile protein decays like 
r-2 with the distance r in the outer region, i.e. r >> due to the phenomenon 
known as Brinkman screening (Brinkman 1947; Howells 1974; Hinch 1977; Bussell 
et al. 1995b). Here, #i is the area fraction of immobile proteins. Of course, in the limit 
of vanishingly small # (and hence #i) the result (3) is still valid. However, for most 
applications involving plasma membranes, the length based on Brinkman 
screening is much smaller than the length ah at which the effect of aqueous-phase 
viscous resistance becomes appreciable, and, consequently, we can set h = 00 for such 
suspensions. Thus, the hydrodynamics in plasma membranes are entirely two- 
dimensional. 

As mentioned earlier, our study is focused on determining diffusivities in non-dilute 
membranes. Thus, for plasma membranes, we shall consider a suspension of mobile 
proteins diffusing in a fixed bed of immobilized proteins, whereas all of the proteins in 
the reconstituted and organelle membranes will be mobile. As explained above, two- 
dimensional simulations are adequate for determining diffusivities in plasma 
membranes. However, the application of purely two-dimensional simulation results to 
predict diffusivities in the reconstituted membranes requires a further step to account 
for the influence of the aqueous phase on a lengthscale ah. We exploit the fact that the 
effect of proteins on the long-range velocity disturbances can be modelled simply as a 
change in the effective viscosity of the membrane to provide an analytical adjustment 
of our two-dimensional numerical solution to account for the behaviour of the three- 
dimensional membrane/aqueous fluid system. 

Our simulation technique is similar to that described by Sangani & Mo (1994) for 
suspensions of spherical particles. This method is based on a multipole expansion for 
the velocity disturbance caused by each particle. However, when the particles become 
sufficiently close, the lubrication flow is treated by including analytically determined 
lubrication forces and torques acting on the particles. In addition, a contribution to the 
fluid velocity resulting from these lubrication forces is expressed in terms of velocity 
induced by force multipoles situated at the centre of the gap between the particles. The 
separate treatment of lubrication forces allows us to use a much smaller number of 
multipoles than would be required in simulations which simply rely upon the multipole 
expansion about the centre of each particle to resolve the lubrication flows. It should 
be noted that the two-dimensional flow considered here is particularly challenging for 
numerical simulations because both the long-range interactions and the short-range 
lubrication forces are stronger than those in flows of spherical particles. 

Throughout this paper we consider only the simplest hard-disk potential interactions 
among the proteins. Deviations from this distribution will cause a small change in the 
short-time mobility of the proteins. However, the largest effects of the interaction 
potentials are likely to occur in the long-time diffusivity and some estimates of these 
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effects may be obtained from the work of Abney, Scalettar & Owicki (1989). These 
investigators found that for interaction potentials thought to be relevant in biological 
systems, the thermodynamic effects on the long-time diffusivity were close to those 
predicted by a hard-disk model. It is important to note that whereas many proteins and 
lipids are charged, the Debye screening length in cellular media (0.15 M NaCl solution) 
is about 8 A and is smaller than the protein diameter. 

The organization of the paper is as follows. Section 2 gives an outline of the 
simulation technique. Section 3 gives results for rotational as well as translational 
short-time self- and collective-mobilities of proteins in reconstituted membranes. This 
includes the aforementioned method for converting results obtained from purely two- 
dimensional simulations to those valid for three-dimensional membrane/aqueous- 
phase systems and comparison of the numerical results with those obtained from the 
effective-medium approximations due to Bussell et al. (1994, 1995a) and with the 
experimental results for various protein-membrane systems available in the literature. 
Section 4 gives the corresponding results for plasma membranes, while tj 5 summarizes 
the important findings of the work. 

2. The numerical technique 
As in most other simulations, we shall make use of the periodic boundary conditions 

for simulating homogeneous infinitely extended suspensions with a finite number of 
particles. Since the viscosity of the aqueous phase is much smaller than that of the lipid 
phase, it will suffice to consider purely two-dimensional disturbances in determining 
the influence of hydrodynamic interactions between disks separated by a distance 
comparable to the radii of proteins. Thus, we consider Stokes flow around N p  disks 
placed within a unit cell of a periodic array. It is convenient to express the velocity field 
in terms a streamfunction @ defined by 

u1 = a@/ax,, u, = -a@/ax,, ( 5 )  

where u1 and u, are velocity components along xl- and x,-axes. Since for Stokes flow 
the streamfunction satisfies the biharmonic equation V4@ = 0, it can be shown that its 
solution can be expressed in terms of an integral equation 

where C" denotes the perimeter of disk a , f  the traction exerted by the fluid at point 
y on C", is the streamfunction corresponding to the average velocity of the 
suspension, and S, is the spatially periodic Green's function for the biharmonic 
equation (Hasimoto 1959), i.e. S,  is a solution of 

where xL are the lattice vectors of the periodic array and 7 is the area of the unit cell. 
This choice of Green's function ensures that the velocity field automatically satisfies the 
condition of periodicity and that the average velocity of the suspension can be related 
in a simple manner to @.,. As shown by Hasimoto (1959), S,  is given by 

1 
S,(x) = -- k-4exp(2xik-x), 

4R37k*0 
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where k are the reciprocal space lattice vectors. It may be noted that while there is no 
Green's function for the biharmonic equation in an unbounded two-dimensional 
space, a Green's function does exist for the bounded periodic domains considered in 
the present study. 

Now the usual method of multipole expansion consists of expanding the integrand 
in (6) in a Taylor series around the centre xu of particle a and expressing thereby the 
velocity or streamfunction in terms of force multipoles at the centre of the particle. The 
strengths of multipoles are subsequently determined from the boundary conditions at 
the surface of the particles (see, for example, Ladd 1988, 1989; Sangani & Yao 1988; 
Mo & Sangani 1994). This straightforward method turns out to be quite inefficient in 
resolving short-range lubrication forces in concentrated suspensions. For this purpose, 
it is advantageous instead to follow the method of dual multipole expansion outlined 
in Sangani & Mo (1994). According to this method the traction f on the surface of the 
particles is first decomposed into two parts: f = f zub+A where f lub  is the lubrication 
force localized on the surface of the particle to the narrow gaps between the particle 
and its neighbours while f is the remainder force density which is more or less 
uniformly distributed throughout the surface of the particle. The lubrication force 
density is written explicitly in terms of the velocities of the particles and its contribution 
to the integral in (6) is expressed in terms of lubrication force multipoles centred in the 
narrow gap between the particles. Thus, for example, writing $ = $ l U b + & ,  and 
expanding the right-hand side of (6) in a Taylor series, we obtain 

oc 

= c c A?& ( * )" V'"'S,(x - xy), 
ay n=l 

(9) 

where ay represents a pair of adjacent particles, n is the unit normal vector along 
xY-xa, t is the unit tangent vector in the gap with n -  t = 0, f p b  and f E b  are the 
components of lubrication forces along n and t respectively xk = i(x"+xY) is the 
centre of the gap, Cafy represents small segments of disks a and y in the gap region 
where f l ub  is taken to be non-zero, V@) = VV ... denotes the nth-order gradient, (*)" 
denotes an n-folder inner product, and A?& is the nth-order lubrication force multipole 
defined by 

These multipoles can be expressed in terms of translational and rotational velocities of 
particles a and y through a detailed analysis of the flow in the gap between the disks 
as shown in the Appendix. 

The other part of ?+b is written in terms of force multipoles at the centre of particles 
as in Sangani & Yao (1988): 

The higher-order derivatives of S, with respect to x, need not be included in the above 
expression as they can be expressed as linear combinations of the terms included in 
(1 1). To determine the strengths of multipoles A;, etc. we expand $ around the centre 
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of each particle in terms of trigonometric functions as in the regular multipole 
expansion method described in Sangani & Yao (1988). Application of boundary 
conditions on the perimeter of each disk and use of orthogonality of the trigonometric 
functions yield an infinite set of equations. This set is truncated by neglecting the 
coefficients in (1 1) with n greater than a pre-selected value N ,  to yield a total of 
(4N, + 1) N p  multipole coefficients in an equal number of equations. In addition, there 
are 3Np equations specifying the force and torque on each disk and 3Np corresponding 
unknown translational and rotational velocity components of each disk. 

The evaluation of the velocity due to lubrication force multipoles requires specifying 
the order to which the lubrication expansion is carried out and the region over which 
the non-zero lubrication forces apply as a function of the gap width between the 
adjacent particles. These were determined through a careful comparison with selected 
test problems as in Sangani & Mo (1994). With these parameters fixed from the test 
problems, it was found that the numerical results obtained using the regular force 
multipoles up to octupoles (N,  = 4) and lubrication force-multipoles up to quadrupoles 
(n = 3) were accurate to within 5 % at all area fractions of disks for a wide variety of 
problems for which the exact solution was either available from the literature or could 
be determined to a high precision using the regular multipole expansion method with 
a sufficiently high N,. 

In what follows, we shall present the results for translational and rotational 
mobilities. These were obtained by averaging over several ( lo2-lo3) configurations of 
hard disks obtained from a Monte Carlo code in which the disks initially placed on a 
square lattice are given random displacements; a new configuration of the disks is 
generated when the disks are non-overlapping. The self-mobilities required specifying 
a non-zero force or torque on a single particle and determining its translational and 
rotational velocity. This was conveniently accomplished by first inverting the matrix 
corresponding to the aforementioned set of 4(N, + 1) N p  equations. The collective 
mobility, which is the average velocity of the particles when a unit force is exerted on 
each of the particles, was determined by solving for the equations directly without 
inversion. We also need to determine the effective viscosity of the suspensions of disks 
in order to renormalize our mobility results for two-dimensional periodic suspensions 
to account for the aqueous phase viscous drag. This was done by imposing a linear 
shear flow and determining the average stresslet induced by the presence of the disks. 
The stresslet is given by 

r i f ,+r j f , -g8 i j rk  f , - ,uU(~~n~+u~n~-~8~~u,n , )}d l , , ,  
s ;=-[  1 { 

2,c. 

where y is a point on the perimeter of the disk, r = y - x", and n is the unit outward 
normal at y.  The force Fa, stresslet S", and torque La can be evaluated by combining 
the contributions from the regular multipole expansion terms (cf. (1 1)) and the 
lubrication force density. The latter can be evaluated from the expressions given in 
Appendix while the former is evaluated from 

where e3 is the unit vector along the x,-axis. 
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3. Reconstituted membranes 
3.1. Short-time self-difusivity 

First we consider reconstituted membranes in which all proteins may be regarded as 
mobile. The computed short-time self-diffusivity Ds,c for three different area fractions 
of disks is shown in figure 2. 

Each point in figure 2 was obtained by averaging over several independent 
configurations of hard disks until the standard error in the mean over different 
configurations was within about 5 %. As can be seen from this figure the computed 
diffusivity increases with the number of disks. The solid curves in the figure represent 
a logarithmic fit, 

to the computed diffusivities, and c, and c, as functions of $ are given in table 1. 
It is clear from figure 2 that the computed diffusivity diverges logarithmically with 

the number of disks. This divergence can be explained in terms of an effective-medium 
theory. On a lengthscale large compared with a, the suspension appears as a continuum 
with an effective viscosity p*, and, therefore, on this large scale we are simulating the 
motion of a single particle in a two-dimensional periodic array with the surrounding- 
medium viscosity p*. The diffusivity of a single disk in a periodic cell with a square 
lattice of width H(H % a) and the fluid viscosity p* can be determined readily from the 
analysis of Hasimoto (1959) to be given by 

k T  
Dpe&*) = 8.nhp* 

kB [log(H/a)- 1.31051 = L [ l o g N , - l o g $ -  1.47631, (16) 

where we have substituted H2/a2  =.nN,/$ to express the influence of periodic 
boundary conditions in terms of the number of disks used in the simulation. Since Ds,c 
and D,,,(p*) must have exactly same divergent behaviour in the limit N p  + 00, we see 
at once from (15) and (16) that 

= pU/(8w*). (17) 

Table 1 shows a comparison of the effective viscosity of the suspension derived from 
the above expression with the values of c, determined from the logarithmic fit of curves 
in figure 2 against the values determined from direct calculation of the effective 
viscosity by imposing a linear velocity gradient across the suspension and determining 
the average stresslet induced by the disks. The latter calculations for p* were found to 
be relatively insensitive to N,. The fact that the effective viscosities determined by the 
two different methods are in agreement validates the use of the effective-medium theory 
to predict the influence of the periodic boundary conditions on computed diffusivities. 
Table 1 also gives the values of effective viscosity as determined from the O(6) 
asymptote (Brady 1984) 

(18) 

We see that this asymptote gives significantly lower values for $ 2 0.1, indicating the 
strong influence of lubrication forces at higher area fractions. 

To obtain estimates of the diffusivities of proteins in reconstituted membranes from 
the results of our two-dimensional simulations, we must account for the viscous 
resistance of the aqueous phase. To accomplish this, we view this as a problem in 
matched asymptotic expansions. In the inner region of scale a from the centre of a 

p* = p[l + 2$ + O($”]. 
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FIGURE 2. The computed short-time self-translational diffusivity Ds,c as a function of the number of 
disks N ,  for several values of disk area fraction 4. The circles represent the simulation results while 
the solid lines represent the logarithmic fit. 

4 C1 c2 (P*P)t (P*/P)1 (P*/P)ll 

1.10 0.05 0.0352 0.0600 1.13 
0.10 0.0312 0.0343 1.28 - 1.20 
0.15 0.0285 0.0193 1.40 1.4 1.30 
0.20 0.0238 0.0140 1.67 1.40 
0.25 0.0204 0.0096 1.95 1 S O  
0.30 0.0175 0.0057 2.27 2.2 1.60 
0.40 0.01 16 0.0027 3.42 - 
0.50 0.0069 0.0021 5.77 5.4 
0.60 0.0031 0.0026 13.0 

- 

- 

- 

- 

- 

- - 

t Calculated from 1/8xc, (cf. (17)). 
1 Calculated from average stresslet in sheared suspensions. 
I( Calculated using the O(4) asymptote (18) (Brady 1984). 

TABLE 1. The coefficients c1 and c2 in the logarithmic fit of computed self-diffusivity (cf. (15)) and 
a comparison of the effective viscosity obtained from various methods 

forced disk the hydrodynamic interactions between disks are governed to leading order 
by two-dimensional Stokes flow interactions and are thus adequately captured by our 
simulation. In the outer region of scale ha, however, the aqueous-phase resistance and 
the three-dimensional nature of the disturbances are important as in Saffman’s (1976) 
analysis while our computed results are influenced by the periodic boundary condition. 
Fortunately, the discrete nature of the suspension is unimportant on this outer 
lengthscale and we can treat the membrane as simply a two-dimensional Newtonian 
fluid with an effective viscosity p*. Thus to obtain the correct expression for the 
diffusivity in the membrane-aqueous-phase system, we must subtract from our 
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Individual Effective Membrane 
interaction viscosity + aqueous 

Simulation result Desired result 

Simulation result Haiimoto result 

Saffman result Desired result 

FIGURE 3. A schematic representation of the outer-region correction to self-diffusivity. The discrete 
nature of the suspension in the inner region is indicated by a circle enclosing a number of disks (open 
circles) around a forced disk (filled circle). The outer region with periodic boundary conditions is 
denoted by a shaded square while the unbounded outer region with aqueous-phase viscous resistance 
is denoted by a hatched region inside a large circle. 

computed diffusivity the contribution due to an outer region consisting of periodic 
two-dimensional suspension and add instead the contribution from the outer region for 
the membrane-aqueous-phase system. The latter is obtained simply by replacing p in 
( 3 )  with p* and h with 

(19) 
Thus, the short-time self-diffusivity D, is related to our computed diffusivity by 

A* = ( p * / p ) h  = p*a/@'h). 

Figure 3 illustrates schematically the method for estimating diffusivities in reconstituted 
membranes. The inner region near a forced disk is indicated by a discrete suspension 
of disks while the outer region in computations corresponds to an effective periodic 
medium indicated by a shaded region. The outer region in the aqueous-phase- 
membrane system is indicated by a hatched region. Note that the inner region in 
determining both Dper and Do corresponds to a suspending medium of viscosity p* 
while the actual viscosity is the lipid viscosity p. This incorrect viscosity, however, does 
not affect the final result since the difference Dper - D,(h*) is independent of the choice 
of viscosity in the inner region. 
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0 0.1 0.2 0.3 0.4 0.5 0 

# 
FIGURE 4. A comparison of the computed short-time self-diffusivity with various theories. The 
simulation results are indicated by circles, the dilute asymptote (21) due to Bussell et al. (1994) by the 
solid line, the effective-medium approximation (22) with the dilute asymptote y* = y(l+2$) by the 
dashed line, and the effective-medium approximation with the computed values of y* (cf. table 1) is 
shown by diamonds. 

We now compare the simulation results to the analytical results of Bussell et al. 
(1994). For low area fractions these investigators obtained 

where B, a remainder arising from higher-order reflections in two-particle interaction 
calculations, had a negligibly small numerical value of O(lOW3). Figure 4 shows a 
comparison of this low-$ asymptote with the computed diffusivities for h = 250, a 
typical value for proteins in reconstituted membranes. The asymptote is seen to give 
remarkably accurate values of diffusivities at all area fractions. 

For estimating diffusivities in non-dilute suspensions, Bussell et al. (1994) used an 
effective-medium theory approximation to arrive at the following estimate : 

with p* = p(l + 24) based on the low-area-fraction asymptote. As seen in figure 4, this 
significantly overpredicts the diffusivity at most area fractions. If, however, one uses 
the actual values of p*/p obtained from simulations (cf. fourth column of table l), then 
a very good agreement is found between the computed diffusivities and the effective- 
medium approximation given by (22). In other words, the use of an effective-medium 
approximation with an enhanced viscosity to describe the effect of protein interactions 
on the self-diffusivity works well provided that one uses the actual effective viscosity of 
the non-dilute suspension. 
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FIGURE 5. The computed values of collective mobility as a function of the number N ,  of disks for 
several indicated values of q5. 

3.2. Collective mobility 
We now present results for the average mobility m, of the disks when all the disks in 
the suspension are acted upon by an equal force. This calculation is relevant to 
determining gradient diffusivity D ,  when the area fraction of protein is slowly varying 
in the plane of the membrane. Thus, for example, the gradient diffusivity can be 
computed from the collective mobility m, by (Batchelor 1976) 

D,  = m,[--@--($) 1, 
' -4 '4 p , T  

where ,ii is the chemical potential and p is the pressure. As noted by Kops-Werkhoven 
& Fijnaut (1981) and Kops-Werkhoven, Vrij & Lekkerkefker (1983), the quantity 
inside the square bracket in the above expression equals k,  T/S(O), where S(0) (cf. (25) 
and (28)) is the zero-wavenumber limit of the structure factor of the suspension at 
equilibrium. 

Figure 5 shows the computed short-time collective mobility mc,, as a function of N ,  
for several different area fractions of disks. As in the case of self-mobility, the solid 
curves are the logarithmic fit 

1 
me,, = - [c, log N p  + c4] 

Ph 

to the computed values, and c3 and c4 are listed in table 2. To obtain the collective 
mobility in the membrane-aqueous-phase system, we follow the argument used in 
determining self-mobility. Thus, we subtract the collective mobility for an effective 
periodic medium from the computed mobility and add the corresponding contribution 
from a membrane with an enhanced viscosity in contact with the aqueous phase. In the 
present case, however, we must also account for the fact that there are forces acting on 
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4 c3 c4 S(O>t S(0)S tchm,II tchm,TI , U 4 *  

0.15 0.01473 0.01333 0.531 0.518 0.172 0.074 0.162 
0.30 0.00504 0.00452 0.258 0.288 0.062 - ve 0.064 
0.50 0.00068 0.00056 0.081 0.099 0.0120 - ve 0.0115 

t From Pad6 approximant (24) due to Chae et al. (1969). 
$ From computed values of ca and c1 (cf. table 1) with the use of (26). 
1 1  From simulations and (27) with h = 250. 
7 Dilute asymptote (29) (Bussell et al. 1994). 
* Effective-medium approximation (3 1). 

TABLE 2. The coefficients c3 and c4 in the logarithmic fit of computed collective mobility (cf. (24)), 
comparison of the structure factor S(0) determined from c, and c, with the Pad6 approximant (28) 
by Chae et al. (1969), and an assessment of dilute and effective-medium approximations. 

the neighbouring disks in addition to the force acting on the test disk. At large 
distances from the test disk, the disks give rise to a constant body force density which 
is balanced by the mean pressure gradient. Near the test disk, however, there is a net 
depletion of disks due to the area-exclusion effect which is accounted for by requiring 
that the flow induced by the test disk at large distances must correspond to that induced 
by a point force FaP given by 

FaP = nF [g(r 10) - 11 dr = S(0) F, (25) i 
where g(r [ 0) is the pair probability density scaled by the number density n so that g 
approaches unity as r+m, and ng = S(r) for r < 2a. S(0) is the zero-wavenumber limit 
of the structure factor whose values for the hard-disk spatial distribution are given by 
Chae, Ree & Ree (1969). The velocity due to the apparent force Fap  in the above 
expression can be thought of as the velocity induced by the discrete distribution of 
disks near the test disk, including the test disk, minus that induced by the uniform 
pressure gradient. 

Thus, we see that, to correct for the aqueous phase resistance and the periodic 
boundary conditions, we simply need to multiply the self-mobility correction by the 
ratio of the apparent force to the actual force, or by S(0). We therefore have m, = 

mc,c  + S(0) [mn(p*> -mpA~*)19 or 

C, = S(0) C, = S(O)p/ (8~p*)  (26) 

and phm, = c4+c,[210gh*+0.3218+log~]. (27) 
Table 2 shows a comparison of S(0) evaluated from the computed values of c1 and c, 
with the Pad6 approximation for S(0) given by Chae et al. (1969): 

(28) 
(1 - 1.96824+0.971642)2 

1 + 0.06364 - 0.5446@ - 0.463243 - 0. 106044 + 0.008745 ' 
S(0) = 

The agreement is seen to be reasonably good. The table also gives the values of m, for 
the special case of h = 250 with which we shall compare the predictions of theory. 

Bussell et al. (1994) have obtained an expression for the collective mobility in dilute 
suspensions. After correcting for a small algebraic error in their expression (68) for 
3U/Un we find that 
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where m, is the mobility at infinite dilution (cf. (3)). For h = 250, the expression on the 
right-hand side of (29) reduces to 1 - 5.72q5. In contrast to what we found for self- 
mobility, the above asymptote for dilute suspensions grossly underpredicts the 
mobility at non-dilute area fractions (cf. table 2). Bussell et al. (1994) also gave another 
expression in which certain two-disk interaction calculations were multiplied by the 
radial distribution function g for a non-dilute hard-disk suspension. Using that 
expression yields m, = 0.078 at q5 = 0.15, a slight improvement over that predicted by 
(29). At any rate, both of their expressions give unrealistic negative values for q5 = 0.3 
and 0.5, and therefore it is desirable to formulate an alternative theory for predicting 
collective mobility in non-dilute suspensions. 

Table 2 shows a comparison with the predictions of an effective-medium theory for 
the collective mobility. The agreement between the computed values and the theory is 
excellent in this case and hence we describe the theory briefly. In this theory we solve 
for Stokes flow past a disk of radius unity with the fluid viscosity equal to ,u for r < 
R and p* for r > R. In addition, a constant body force equal to nF is assumed to apply 
in the effective medium, r > R. As seen from within the effective medium, the net force 
on the test disk appears to be F minus the buoyancy force q5R2F. Equating this 
apparent force to FS(0) gives 

It may be noted that S(0) --f 1 -4q5 as q5 + 0, so that R --f 2 for dilute suspensions. For 
higher values of q5, R is smaller, e.g. R = 1.36 at q5 = 0.5. Now the continuity of the 
velocity and stress at r = R together with the no-slip boundary condition at r = 1 and 
the matching requirement with Saffman's (1976) outer region accounting for the 
aqueous-phase viscous resistance yields 

R2 = [l  - S(O)]/q5. (30) 

where 

I 1 
log R-f+;RP2 +-{2p*(R-'- R-4) - (p* -p) (1 + R-4) (1 - R-2)) , 

4% 
(32) 

For small q5, (3 1)  compares well with the exact asymptote (29) with the coefficient 1.40 
in the latter replaced by 1.14, while at high q5 it predicts mobilities within 5 % of the 
computed values. 

It is interesting to note that our finding that the dilute asymptote for the collective 
mobility in the suspension of disks fails even at moderate values of q5 is similar to the 
corresponding results for suspensions of spheres. For spheres, Brady & Durlofsky 
(1 988) have constructed an effective-medium approximation in which the suspension 
viscosity is taken to be that of the suspending fluid. Such an approximation does not 
yield good estimates of mobility in the present case. 

We might add here that the idea of using an effective-medium approximation for 
r > R with R determined from the structure factor data (cf. (30)) could also be applied 
to estimate the self-diffusivity. The self-mobility can be estimated from (31) by 
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FIGURE 6. Rotational diffusivity as a function of 4. The circles are the simulation results 

while the solid line is the low-4 asymptote. 

substituting B = 0 and S(0) = 1 in that equation. The computed self-diffusivity ratio 
DJD0 at h = 250 at 4 = 0.5 is 0.252 while the effective-medium approximation 
computed with R = 1.342 determined from (30) gives 0.262. In comparison, the 
effective-medium approximation with R = 2 yields 0.28 1. The corresponding numbers 
for $ = 0.3 are 0.537 (computed), 0.547 ( R  = 1.54), and 0.560 (R = 2). Thus, we see 
that while using a simpler approximation with R = 2 worked reasonably well in case 
of self-mobility, using variable R yields excellent estimates for both self- and collective 
mobilities. 

3.3. Rotational diffusivity 

Figure 6 shows results for rotational diffusivity. D,,o is the diffusivity at infinite dilution 
(cf. (4)). As mentioned in the Introduction, the velocity induced by a rotating disk, or 
a point torque, decays as 1 / r  in two-dimensional space, and therefore it is unnecessary 
to account for the viscous resistance of the aqueous phase. The results for rotational 
diffusivity were found to be relatively insensitive to N,. 

The solid line in figure 6 corresponds to the dilute asymptote 

m, = mr,o( 1 - 0.7934) (35) 
obtained from a pair-interaction calculation using 

where m,(O I r), the rotational mobility of the disk at the origin given the presence of 
a force and torque free disk at r, is calculated in Bussell et al. (1992). We see that the 
dilute asymptote gives estimates accurate to within 10% for $ < 0.3. An effective- 
medium approximation in which the suspension for r > 2a is treated as a fluid of 
viscosity p*, being considerably greater than the exact results or the dilute-theory 
asymptote, does not yield accurate estimates of the rotational mobility. 
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We note that the rotational mobility is not as hindered because of hydrodynamic 
interactions as the self- and collective mobilities. The rotational mobility is reduced by 
a factor of roughly 3 as # is varied from zero to 0.6 while the translational mobilities 
decreased by a factor of 10. 

3.4. Comparison with experiments 
Several different techniques have been developed for measuring rotational and 
translational diffusivities of proteins. Perhaps one of the earliest, and by far the most 
reliable one, is the technique of fluorescent photobleaching and recovery (Axelrod 
et al. 1976) which measures the fluorescent recovery of a photobleached area due to 
diffusion of proteins from the surrounding region in the membrane. The timescale for 
diffusion in these experiments is much greater than the time it takes for the spatial 
configuration of disks to change appreciably and thus these experiments measure the 
long-time self-diffusivity whereas we have computed the short-time diffusivity. The 
long-time diffusivity can be determined, in principle, with the help of the Langevin 
equation using Stokesian dynamics to account for hydrodynamic interactions by the 
method outlined by Ermak & McCammon (1978) and refined over recent years by 
Brady & Bossis (1988). However, this will require substantially more computational 
effort and therefore we leave it to a future investigation. In what follows, we shall use 
an approximate scheme for estimating long-time diffusivities from the short-time 
values obtained in the present study. 

The long-time diffusivity is generally much smaller than the short-time diffusivity 
because of thermodynamic effects such as the volume exclusion and the inter-particle 
non-hydrodynamic forces. The thermodynamic contribution to long-time diffusivity 
can be estimated using simulations in which the hydrodynamic mobilities of the 
individual particles are treated as independent of the spatial configurations of particles. 
Taking the mobility to be the same as the short-time mobility averaged over several 
configurations, we approximate the long-time diffusivity as 

D, =fD,, (37) 

wherefis determined as a function of # through suitable simulations of the long-time 
diffusivity with the short-time diffusivity of the individual particles taken as unity. 
Medina-Noyala (1988) has studied the validity of the above approximate scheme for 
the suspension of spheres and found it to yield very good agreement with the 
experimental results for diffusivities of spheres. Recently, Brady (1994) showed that 
(37) can be derived formally using a self-consistent closure of the N-particle 
Smoluchowski equation. 

The thermodynamic correction factor f can be estimated either through non- 
hydrodynamic Brownian or Monte-Carlo simulations or through a suitable analytic 
approximation such as one suggested by the caging theory due to Rallison (1988). 
Bussell et al. (1995a) applied both of these techniques and found a good agreement 
between them. They also found good agreement between the experimentally determined 
long-time self-diffusivity and that predicted by (37) with D, determined for dilute 
suspensions (cf. (2 1) ) .  Their calculations used the simulations of hard hexagonal disks 
on a triangular lattice with no hydrodynamic interactions by Saxton (1987) who gave 

(38) f = 1 - 2.1 187# + 1 .8025#2 - 1 .6304$3 + 0.9466$4 

as a fit to numerical simulation results for $ up to 0.65. 
We now compare our theory with the experimental results of Peters & Cherry (1982) 

and Chazotte & Hackenbrock (1 988) who measured long-time self-diffusivities of 
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FIGURE 7. A comparison of the theory (open circles) for the long-time self-diffusivity with the 
experimental data (diamonds) of Peters & Cherry (1982) for diffusivity of bacteriorhodpsin in a 
reconstituted lipid bilayer. Do is chosen such that the theory and experiments match exactly at the 
lowest area fraction. The solid line indicates the thermodynamic effect represented by function f in 
(38) (Saxton 1987). 

bacteriorhodopsin and complex 111, respectively. (Both bacteriorhodopsin and complex 
I11 are integral membrane proteins.) In making these comparisons, we need to estimate 
the protein area fraction 4, the height h of the bilipid layer, the radius a of the protein 
molecules, and the viscosity ,u of the lipid phase. Most of these parameters are 
estimated from various sources available in the literature while the others have to be 
estimated assuming such quantities as the fraction of protein mass that lies inside the 
lipid bilayer. For example, for bacteriorhodopsin experiments we take a = 2 nm, 
,u = 1 P, h = 5 nm, and ,u' = 0.01 P from Peters & Cherry (1982) which yields h = 250 
while we choose h = 750 for complex I11 experiments on the basis that at very dilute 
concentrations the diffusivity of complex I11 is three times smaller than that of 
bacteriorhodopsin. In other words, we assume the viscosity ,u to be three times larger. 
The area fraction is estimated from the crystal radii of protein and lipid molecules 
which are available from other sources (e.g. Henderson & Unwin 1975) and the mass 
fraction of protein in the membrane. Further details on estimating various parameters 
may be found from Bussell et al. ( 1 9 9 5 ~ ) .  It is important to emphasize that all 
parameters required for comparison are estimated a priori from sources independent 
of the experimental data with which we shall make the comparison, except for some 
cases in which we used the diffusion data available at the lowest value of q5 to adjust 
a single undetermined parameter in estimating the infinite-dilution diffusivity Do. This 
is justified since our main goal in the present study is to assess the concentration 
dependence of the diffusivity. The same will apply to the comparison with the 
experimental values of diffusivity of proteins in cellular plasma membranes to be 
presented in $4.3. 

Figure 7 shows a comparison with data for bacteriorhodopsin taken from Peters & 
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FIGURE 8. Comparison with the experimental data on complex I11 diffusivity in inner mitochondrial 
membranes from Chazotte & Hackenbrock (1988). Again, Do is chosen to match the experimental 
data at the lowest area fraction. The open circles represent the experimental data assuming a protein 
mass fraction residing in the membrane of 0.3 while the diamonds correspond to the mass fraction 
of 0.4. The theory is indicated by the solid line and filled circles. 

Cherry (1982). The solid curve in that figure corresponds to f given by Saxton (1987) 
(cf. (38)) which represents the thermodynamic contribution to the long-time diffusivity. 
We note that both hydrodynamic and thermodynamic interactions must be accounted 
for to obtain good agreement between theory and experiments. Figure 8 shows the 
comparison with data for complex I11 diffusivity in inner mitochondrial membranes 
enriched with soybean phospholipids as given by Chazotte & Hackenbrock (1988). In 
both figures Do was adjusted so that its experimental value at the lowest area fraction 
(q5 z 0.1) matches the theory. Furthermore, it was also necessary to assume the value 
of the fraction of protein mass residing in the membrane to estimate #. The data 
indicated by circles correspond to an assumed value of 0.3 for the fraction of protein 
mass while the diamonds correspond to an assumed value of 0.4. These values for the 
system are quoted by Deatherage, Henderson & Capaldi (1982) and Leonard, Haiker 
& Weiss (1987). The vertical bars representing experimental uncertainty indicate the 
inadequacy of these data for testing the theory except at high area fractions. At any 
rate, the theory is in reasonable agreement with the data. 

Peters & Cherry (1982) have also presented data on the dependence of diffusivity on 
the aqueous-phase viscosity at q5 = 0.154. These data are compared with the theory in 
figure 9. Do for this figure is the same as that used in figure 7 as both correspond to the 
same area fraction of proteins. The good agreement in this case implies (i) the validity 
of the aqueous-phase viscous resistance screening suggested by Saffman even when h 
is decreased from 250 to about 25; and (ii) a variation of D J D ,  as fp/p* logp’. 
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FIGURE 9. Comparison of theory and experiments for the dependence of the long-time diffusivity on 
the aqueous-phase viscosity. The circles are data for bacteriorhodpsin by Peters & Cherry (1988) and 
the diamonds are the computed results from theory. Do was chosen to be the same as in figure 7. 

4. Plasma membranes 
As mentioned in the Introduction, protein diffusivities in cellular plasma membranes 

are generally much smaller than in reconstituted membranes having the same area 
fraction of proteins. Four factors are generally thought to influence protein diffusivity 
in plasma membranes : area exclusion, hydrodynamic interactions, obstruction of 
protein motion due to interaction between the cytoplasmic tail of the protein and 
cytoskeleton structures, and transient binding (immobilization) of proteins. The 
purpose of our calculations is to assess the contribution of hydrodynamic interactions 
to diffusivity. As noted by Bussell et al. (1955b) hydrodynamic interactions will 
significantly slow the motion of mobile proteins because the presence of immobile 
proteins causes Brinkman screening of hydrodynamic disturbances induced by the 
mobile proteins. This Brinkman screening is more important than the Saffman 
screening. Accordingly, we shall consider in this section the diffusivities of mobile disks 
through a suspension in which a fraction of the disks are fixed. As in the previous 
section, we shall first compare the results of numerical simulations with dilute and 
effective-medium analytical results and then with experiments. 

4.1. Serf-diflusivity 
The results for the short-time self-diffusivity as a function of N p  for several different 
combinations of the total area fraction $t and the immobilized-disk area fraction $$ are 
shown in figure 10. As in previous calculations, each point in the figure represents an 
average over many ( lo2-lo3) independent configurations of hard disks. In generating 
these configurations from an initially ordered arrangement by a Monte-Carlo 
procedure, we allowed all the disks to move. Thus the overall spatial configurations are 
the same as that for a free suspension of hard disks. It is only in doing hydrodynamic 
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calculations that we take a fraction of the disks to be immobile. The self-diffusivity is 
seen to become nearly independent of N ,  for N p  > 40. Thus we see that, unlike the case 
of free suspensions, the two-dimensional model is adequate for determining the 
diffusivities in partially fixed suspensions, and D, = D,,c. All subsequent calculations 
were made with N ,  = 100. 

Figure 11 gives the self-diffusivity as a function of the mobile area fraction q5m for 
two different values of q5(. The diffusivity varies linearly with q5m over a substantially 
large range of area fractions. Thus we fit our computed results by a linear relation 
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and list c5 and c6 for several different $( in table 3. The diffusivity of a single 
mobile disk through a completely immobilized suspension (q5m = 0) is then given by 
c5kB Tlph.  The diffusivity for this limiting case is plotted in figure 12. We shall 
compare these results with the theory after a brief review of the latter. 

Bussell et al. (19956) were the first to suggest treating cellular plasma membranes as 
partially fixed beds of particles. They presented results for dilute fixed beds which we 
shall extend to higher area fractions. The presence of fixed particles introduces an 
additional term in the conditionally averaged momentum equation given the presence 
of a test disk at the origin (Brinkman 1947; Howells 1974; Hinch 1977). Thus, the 
momentum equation for flow around a test disk satisfies the Brinkman equation 

- Vp + pV2u + pk-lu = 0, (40) 

where k is the Darcy permeability of a fixed bed with area fraction q5( of fixed disks and 
p is the viscosity of the medium. The values of k for hard-disk distributions have been 
obtained by Sangani & Yao (1988) in an earlier investigation with smaller N ,  and more 
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FIGURE 11. The short-time self-diffusivity as a function of 4, for two different values of q5'. The 
straight lines are the best fit to computed values. 

46 c5 Cc c7 C8 

0.05 0.0918 -0.144 0.930 - 1.00 
0.10 0.0594 -0.104 0.847 - 1.02 
0.15 0.0418 -0.081 0.765 -0.93 
0.20 0.0300 - 0.064 0.725 - 1.01 
0.25 0.0213 -0.051 0.652 -0.95 

TABLE 3. The coefficients c5 and c, in the linear fit of self-diffusivity (cf. (39)) in partially fixed 
suspensions, and c7 and c8 in the linear fit of rotational diffusivity (cf. 45)). 

accurately recently by Sangani & Mo (1994). These investigators determined the 
average force F exerted on the fixed disks by fluid moving with an average superficial 
velocity U. Denoting their results in terms of an average resistivity W = F/(47cpU), the 
permeability of a fixed bed with an area fraction $i is given by 

k = a2/(45bi W). (41) 

Howells (1974) obtained an estimate of W by solving for Brinkman flow (cf. (40)) 
around a fixed test disk and equating the force on the disk to 47cpUW to obtain 

where KO and Kl are modified Bessel functions. According to this scheme, the effective- 
medium approximation is obtained by solving (41) and (42) simultaneously. 

Now we can readily use the above result to obtain an approximation for the mobility 
of a single disk through a fixed bed by noting that the effective-medium theory does not 
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FIGURE 12. Comparison of the computed values (open circles) of D, at q5m = 0 with the Brinkman 
approximation (solid line) given by (41)-(43). The diamonds are the computed values (Sangani & Mo 
1994) of 1/4nW, W being the resistivity in the fixed bed. 

distinguish between the disk moving through the fixed bed with a zero average velocity 
of the bed and the fluid moving through a completely fixed bed. Thus the effective- 
medium approximation for the mobility of a cylinder of height h is simply given by 

m, = (47c,uhB)-'. (43) 

The solid line in figure 12 represents results for the self-mobility of a disk as a function 
of $i obtained by solving (41)-(43). The agreement between the theory and simulation 
results obtained using the values of c5 in table 3 is very good for small values of $i 
at which one would expect the above expression to be accurate. At higher values of q5i, 
however, the computed mobilities are greater than those predicted from the above 
theory. One question that immediately arises is whether the observed difference results 
from an incorrect estimate of the permeability or equivalently 9 by (41) and (42) or 
from the inapplicability of (43) for determining the mobility in partially fixed beds. The 
diamonds in figure 12 show the values of (47c,u9)-' obtained from numerical 
simulations of flow through fixed disks by Sangani & Mo (1994). We note that the 
effective-medium approximation gives quite accurate estimates of 9, at least up to 
$m = 0.3, and hence the observed difference between the computed mobility and the 
effective-medium estimate suggests that (43) fails at higher $i. 

The observation that the computed m, is greater than (47cph9)-l at higher q5i can be 
explained in terms of lubrication forces. Specifically, the calculation of 9 at higher q5$ 
is dominated by lubrication forces arising from the differences in the streamfunction 
values for neighbouring disks (Sangani & Yao 1988; Sangani & Mo 1994) which makes 
9-l - e5I2, e being a measure of the average gap width between disks in a concentrated 
bed. On the other hand, one expects m, to be dominated by relative motion lubrication 
which makes m, - e3I2. Note that this contrasts with the case of spherical particles 
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FIGURE 13. The effect of q5m on the short-time diffusivity in partially fixed beds is explained in terms 
of its effect in modifying the viscosity of the effective medium. The open symbols are the simulation 
values while the filled symbols are obtained by multiplying the simulation values at q5m = 0 with the 
viscosity ratio p/p*($,) given in table 1. 

studied by Durlofsky & Brady (1987) for which the lubrication forces are absent from 
the calculation of 9. These investigators also found that while the Brinkman equation 
gives quite accurate estimates of 9 it fails in describing accurately the velocity 
disturbance caused by a moving spherical particle in a bed of fixed particles at 
moderate values of q5. 

The above discussion was restricted to q5m+0. Now we consider the effect of 
changing q5m on self-diffusivity. As in the case of fully mobile suspensions, we expect 
this to merely alter the effective viscosity of the suspension. The results from figure 11 
are replotted in figure 13 for this purpose and indicated by open circles and triangles. 
The filled circles and triangles, on the other hand, correspond to an effective-medium 
approximation in which we take the diffusivity at q5t = 0.15 and 0.25 with q5m = 0 from 
figure 12 and multiply it with p/p* obtained from table 1 for $ corresponding to q5m. 
We see an excellent agreement between computed diffusivities and those estimated 
from the effective-viscosity data for $t = 0.15. At q5t = 0.25 and higher $m, however, 
we observe a consistent overprediction by the effective-medium theory. The screening 
length predicted by the effective-medium theory in a dense fixed bed is extremely short 
and consequently it is not too surprising that the effective-medium approximation fails. 
In addition, we should note that the theory only accounts for the change in viscosity 
of the suspension due to mobile disks and thus ignores the contribution to the viscosity 
from fixed disks. 

Figure 14 shows the effect of varying q5i keeping the total area fraction q5t constant. 
We see that diffusivity decreases with increasing q5i. The higher values of $t reduce the 
Brinkman screening length and hence the diffusivity. 

It is interesting to compare the values of diffusivity in suspensions with a fraction of 
disks fixed against those in completely mobile suspensions for which the Saffman 
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FIGURE 14. Short-time self-diffusivity as a function of q5i at constant 9,. 
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FIGURE 15. Rotational diffusivity as a function of 9, for indicated values of 9,. 

screening is important. With h = 250 and $t = 0.05, a free suspension ($i = 0) yields 
a non-dimensional diffusivity ,uhD,/k, T = 0.365 while a fixed suspension ($i = 0.05) 
yields 0.094. A further increase of $i by 0.05 reduces the diffusivity further to 0.054. 
Similarly, $m = 0.15, $i = 0 and h = 250 gives a non-dimensional diffusivity of 0.308 
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while $m = 0.15 with $i = 0.05 yields a diffusivity of 0.071. Thus a larger drop in 
diffusivity occurs as $i is increased from zero to 0.05 than from 0.05 to 0.10. Of course 
in comparing these different values of diffusivity we must keep in mind the relative 
magnitude of the screening lengths based on Brinkman and Saffman screening. For 
small $i, k /a2  diverges as -log (4$J)/(4$J. The Brinkman screening length k1I2 even 
at $i as small as 5 x lop4 is only 50a compared with the typical Saffman screening 
length of 250a. In most plasma membranes the fraction of immobilized proteins is 
about 30 YO of the total proteins and thus Brinkman screening plays the dominant role. 

4.2. Rotational diffusivity 
Bussell et al. (1995b) also gave an approximate expression for the rotational diffusivity 
of a single disk in a partially fixed bed. Their calculation involved solving the Brinkman 
flow around a rotating disk to yield 

where a2 = a2/k.  The last equality results from the use of the effective-medium 
approximation (41) and (42) for the permeability. This calculation was based on 
equating the Brinkman viscosity to the lipid viscosity and consequently the ratio of 
rotational diffusivity is independent of $m. 

Figure 15 shows the rotational diffusivity as a function of q5m for three different 
values of $i. We see that the diffusivity varies linearly with $m. These data are therefore 
fitted according to 

(45) 

and c, and c8 are listed in table 3 .  We now estimate DJD,,, at 4, = 0 to equal c,($~) 
and compare with the effective-medium approximation (44). At $i = 0.05, the 
asymptote (44) predicts the diffusivity ratio to be 0.90 while simulations (c, in table 3) 
give 0.93. Thus we see that assuming the validity of the Brinkman approximation for 
the whole region outside the disk yields lower diffusivities. 

For the translational diffusivity, we found that the reduction in D, with increasing 
$m could be explained in terms of an effective viscosity. We attempt to achieve the same 
result for the rotational diffusivity in figure 16. Thus we compare the computed values 
of D,/D,,, (i.e. c,(q5J + 4, c8(q5J) to the values c,($Jp/p*($,J obtained by assuming 
that the only effect of non-zero $m is to modify the effective-medium viscosity. The 
viscosity ratio p*/p is taken from the fourth column in table 1 .  We see that, unlike the 
case of translational diffusion, the rotational diffusivities obtained using the effective 
viscosity are considerably lower than the simulation values. 

Both of the above results indicate that the approximations in which the effective 
Brinkman medium is assumed to apply for the complete region outside the test disk 
give poor estimates of the rotational diffusivity. This is in contrast to what we found 
for the translational diffusivity. In the latter case, the interactions are long range in 
nature since the velocity induced by a translating disk does not decay until Brinkman 
screening becomes effective. The interactions in the rotational diffusivity problem, on 
the other hand, are not as long ranged and the discrete nature of the suspension is 
consequently important. 

Figure 17 shows the rotational diffusivity as a function of $$ for constant &. This 
figure also includes D,/Dr,o values for q5i = 0 taken from the free-suspension 
simulations. We see a rather smooth transition from the free suspension to the partially 
fixed suspensions. The decrease in D, is less severe since the rotational interactions are 

Dr/Dr,o = c 7 U J  + cs($i) $m 
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FIGURE 16. The rotational-diffusion analogue of figure 13. The effect of varying $m cannot be 
explained in terms of its influence on the effective viscosity of the medium. 
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FIGURE 17. Effect of $, on rotational diffusivity. 
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short range in both the free and the partially fixed suspensions. This is unlike the case 
of translational diffusivity which shows a large drop in diffusivity as the screening 
length changes from ha to kl/'. 

4.3. Comparison with experiments 
As in the case of reconstituted membranes, we need to estimate the long-time self- 
diffusivity in order to compare our simulation results with experiments, We shall 
assume the validity of (37) and determine the thermodynamic hinderance factorf from 
simulations of Saxton (1 990) which ignore hydrodynamic interactions but account for 
area exclusion effects and the partial immobilization of the suspension. Since the total 
area fraction in biological membranes is typically in the range 0.2-0.3, we quote below 
his results for this range of $ t :  

$t = 0.30: f = 1.67$,, (46) 
0.08 +2.64, for 4, d 0.07, 

0.15 + 1.6$, for 0.07 < $, < 0.25, 
q5t =0.25: f= 

0.22 + 3.04, for 4, d 0.06, 

0.31 + 1.5$, for 0.06 < 4, d 0.20. 
$t = 0.20: f= 

Before presenting a quantitative comparison of the theory with experiments in which 
the area fraction of immobile protein was varied, it is interesting to note the qualitative 
difference between diffusion in membranes in the presence and in the absence of 
cytoskeletal constraints. The membranes of erythrocytes (red blood cells) provide the 
most direct comparison. The diffusivity of band 3, the most common integral 
membrane protein, in most types of erythrocytes is about 4.5 x cm2 s-l. However, 
the diffusivity of band 3 protein in spherocytes, a particular type of erythrocyte in 
which the cytoskeleton has a minimal effect on the membrane, is 2.5 x lo-' cm2 SKI 

(Sheetz, Schindler & Koppell980). Thus, the interaction of the membrane protein with 
cytoskeleton brings about a 56-fold reduction in the diffusivity. The total area fraction 
of proteins in these membrane is about 0.17; with 40 % of the proteins immobile in case 
of most erythrocytes (i.e. q5( z 0.07) and none in spherocytes, our fixed-bed model 
predicts that an 8-fold decrease in diffusivity will result from the interaction of mobile 
proteins with the immobile proteins. (This calculation is based on the assumption that 
the area fraction of band 3 in spherocytes is also 0.17 and that h = 1000.) The 
additional 7-fold decrease in diffusivity observed experimentally may result from the 
hinderance of the diffusion of mobile proteins resulting from the interaction of the 
portion of these proteins that protrude into the aqueous phase with the cytoskeleton. 
In most cells, the total area fraction of proteins is close to 0.3 and the effect of 
hydrodynamic interactions with immobile proteins will be even more pronounced than 
in erythrocytes. 

Figure 18 shows a comparison with the data of Henis & Elson (1981 a) for the long- 
time self-diffusivity of surface immunoglobulins (sIg), a cell surface protein, labelled 
with monovalent fragments of rabbit anti-mouse IgG in the plasma membrane of 
mouse lymphocytes. These investigators varied 4% by treating cells with various 
amounts of concanavalin A which binds receptors containing lectin domains. We 
assume that the immobilization of sIg, which was reported by these investigators, is 
representative of the immobilization of all receptors on this cell. Thus, the comparison 
is based on the assumption of 4t = 0.25. The lipid viscosity was chosen by requiring 
that the theory matches one experimental point. We chose the point corresponding to 
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FIGURE 18. Comparison of theory and experiments for the long-time diffusivity of surface 
immunoglobulins in plasma membranes of mouse lymphocytes. The lipid viscosity was chosen such 
that the theory and experiments agree at d, = 0.08. The theoretical values are indicated by diamonds 
while the experimental data by Henis & Elson (1981~) are indicated by open circles. 

4% = 0.08, the second lowest area fraction in the figure, because the diffusivity increased 
slightly (although perhaps within experimental uncertainty) between the first two 
points. A change in the estimate of ,u will shift the curve up or down roughly in 
proportion to p. We note that the agreement between the theory and experiments is 
very good. 

Finally, it should be noted that we have presented here a model in which the 
diffusion of freely mobile proteins in a plasma membrane is retarded solely by 
hydrodynamic interactions with other, entirely immobilized, proteins. This fixed-bed 
model predicts a much lower diffusivities found in cell membranes compared with 
reconstituted membranes. It also compares well with the variation in diffusivity with 
immobile area fraction observed in Henis & Elson (1981 a) as the above comparison 
showed. However, it is likely that other factors (including the interaction of portions 
of proteins that protrude into the aqueous phase with the cytoskeleton) influence 
diffusivities in cell membranes. For example, experimental data on cell types other 
than lymphocytes by Henis & Elson (1981b) fail to show the correlation between 
immobile protein area fraction and protein diffusivity predicted by the model. 

5. Conclusions 
We have developed a method for numerically simulating hydrodynamic interactions 

among integral membrane proteins. This is used to determine the short-time self- 
translational and rotational diffusivities and the gradient diffusivity in both 
reconstituted and plasma membranes. The results of computations are compared to 
theoretical predictions of Bussell et al. (1994, 1995a,b) for dilute membranes, and to 
appropriate effective-medium approximations for non-dilute membranes. An attempt 
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has also been made to provide some reasons for the observed success or failure of the 
effective-medium approximation in predicting correct short-time diffusivities. We 
found that the approximations are adequate for problems in which the interactions are 
long range, i.e. in predicting self- and collective translational mobility in free 
suspensions and in partially fixed suspensions at moderate $i where the Brinkman 
screening length is large compared to the radius of the disks. 

The computed short-time diffusivities adjusted for the thermodynamic effects in an 
approximate manner using the results of Monte Carlo simulations gave estimated long- 
time self-diffusivities which were in very good agreement with experimental data on 
various protein-membrane systems. This represents a significant improvement over 
previous theories which did not account for the effect of the hydrodynamic interactions 
of proteins. The comparison required making reasonable estimates of various 
parameters such as the lipid phase viscosity and the total area fraction. Most of these 
parameters were estimated from sources independent of the data with which the 
comparison was made except in some cases where an experimental point was used to 
fix a system parameter. This was justified since our primary objective was to assess the 
effect of protein concentration on the diffusivity. However, of course, it would be 
desirable to have experimental measurements in which independent means of predicting 
or experimentally determining all the parameters required for comparison with the 
theory were available. 

We should perhaps add here that the experimental data we have chosen for 
comparison with the theory represents only a small fraction of the data available in the 
literature, which also include some data on rotational (see e.g. Zidovetzski et al. 1986; 
Myers, Holowka & Baird 1992; Rahman et al. 1992) and gradient (McCloskey, Liu & 
Po0 1984; Young, McCloskey & Po0 1984; Zagyansky & Jard 1979) diffusivities. The 
experimental uncertainty in many of these data is such that a quantitative comparison 
with our theory for these diffusivities is not meaningful. From the standpoint of future 
theoretical developments, it would be desirable to predict the lipid-phase viscosity and 
to assess the accuracy of the approximation (37) which decoupled the effects of 
hydrodynamic and thermodynamic interactions on long-time diffusivity. We hope to 
address the latter in future work by carrying out Stokesian simulations and determining 
the trajectory of each protein through Langevin equation as outlined by Ermak & 
McCammon (1978) and Brady & Bossis (1988). 

This work was supported by the National Science Foundation grants BCS- 
8958632 to D. A. H., CTS-8857565 to D. L. K., and CTS-9118675 and CTS-9307723 to 
A. S. S. The computations were performed on the Cornell National Supercomputer 
Facility. 

Appendix 
To determine the lubrication force multipoles, we carry out a detailed analysis of the 

flow in the narrow gap between two disks. Because of the linearity of the governing 
equations, this can be done by solving each of the problems listed in figure 19 
separately. Denoting the upper and lower disks by y and a respectively, and AU,, = 
(UY- U")-n, AU, = (UY- U").t ,  0, = #2'+0"), and A 0  = ;(W-Q"), where n is 
the unit vector along xY-x", and t is the unit tangent vector normal to n, we write 

1c. = U,, 1c.* + €(A U, lc.B +- 0, $c i- AO$D), (A 1) 

where $A - ll.D are determined by solving the problems A-D shown in figure 19. Scaling 
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FIGURE 19. The lubrication problems A-D. 

I 
FIGURE 20. A schematic of the local coordinate system for analysing various lubrication 

problems. 

the distances in the tangent and normal direction by 
and carrying out standard lubrication analyses yields 

9 3  

and c, respectively (figure 20), 

@ A  = [ & - 2 + .{ .5( & - &) - .3( & + 20h3 - -) + (& - A)} + 04, 
(A 2) 

(A 3) 

(A 4) 

Z' h-1 1 1 h-1 
@ B = h +  ----+ 4 c{ z4 (&&) + z2 (i-z-e) - T} + O(e2), 

@ c - -+c  - ii { 2 4  (3k3 ~ ~ ~ ) + Z ' ( ~ - ~ - ~ ) } + O ( € Z ) ,  
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where h = 1 +$?. Note that the surface of the particles in this scaled coordinate 
system is given by 

(A 6) z = Z(X) = & [h + &(h - 1)2 + O(E')]. 

Now the momentum equation can be integrated after substituting for the velocity 
components in terms of the streamfunction to obtain expressions for pressure and the 
force density distribution at the surface of the particles. For example, writingflub = 
f Fbt + f Fbn, with 

(A 7) 
and a similar expression for f F b v a ,  we obtain 

f Fbsa = ,u[AU, f ," + A U, f ," + SZ, f ," + ASZf ,"I, 

The lubrication force density on disk y can be obtained by combining the above 
expressions with the symmetry properties for each of the problems. 

In computations we take the lubrication force density to be non-zero and given by 
the above expressions only for -xo < x < x, on each disk with 0, = ~~"5, a suitably 
chosen small number. The lubrication force, stresslet, and torque on each disk are 
evaluated by integrating the above force density over this range of x,, e.g. 

Fzub,a = P' l:j'zub,a [1+ E(h - l)] dx. (A 14) 

For example, the lubrication force on disk a! due to relative motion along n is given by 
pAUn F A ,  where 

1 [3 3x {:; 87x 3 x }  1 F A  =- -J+o+, -J+-?-L +O(c2)  , 
E3I2 4 4h0 80h, 8hi 

with h, = 1 +$x: and 

For fixed 0, and c --f 0, (A 15) yields FA + 3n[ 1 + 69s/20 + O(e2)]/(2(2e)3/2). This is in 
agreement with the result presented by Bussell et al. (1992). (Note that E in the results 
presented by these authors equals the gap width and not the half-gap width as 
suggested by their figure 7.) 

The lubrication force multipoles A(n) can be determined now by substituting for the 
lubrication force density in (10). The problems A-C give non-zero lubrication 

J = .\/2 tan-' (x0/d2). (A 16) 
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multipoles only for even n while the problem D gives a contribution to odd-ordered 
multipoles. In the present study we evaluate A(,) up to n = 3. Substituting for force 
density in (10) and using symmetry properties for various problems yields, for example, 

A(z) = ntB,, +nn B,,, (A 17) 

where B,, = [Zf;’ + ~-l/~xf:] [ 1 + ~ ( h  - I)] dx, 
XP 

In deriving the above expression for B,,, we have made use of the fact that only the 
symmetric part of A(2) is relevant since $lub depends only on the scalar product of 
the tensor with VVS,. Upon substituting for f$ and ft into (A 18) and carrying 
out the integration, we obtain 

4 16x0 80h0 4hi 3 11 ’ AU,x, 3 3 27J 3 Brit = 7 [ 4 h 0  -+s { --+ 

where h, = 1 ++xxf. As E +  0 keeping Oo = E’/~x, fixed, B,, + AUn/n[3/(2O,) - 300/4]. 
Thus, even though the leading-order lubrication force due to the relative velocity along 
n is O ( E - ~ ~ ,  the deviatoric lubrication force dipole is only O( 1). The two leading-order 
contributions of O(s--li2) from f,” and f: cancel resulting in a smaller, O(l), 
contribution to the lubrication force dipole. 

Expressions for B,, and the other lubrication force multipoles are obtained in a 
similar manner. 

As mentioned in the main text, we choose x, as a function of s such that the 
computed results agree with the known results for a pair of particles for which exact 
calculations are available from Bussell et al. (1992). In computations, we chose 
different values of xo for each of the lubrication multipoles. These values were chosen 
such that our results for pair of particles match the results of Bussell et al. After fixing 
xo, we carried out calculations for random arrays with N p  = 9 for which exact results 
could be obtained by using N, = 15. It was found that the computed results with 
N, = 4 and lubrication multipoles to n = 3 were accurate to better than 5%. 
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